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A B S T R A C T   

This study presents the Construction and Demolition Waste Object Detection Dataset (CODD), a benchmark 
dataset specifically curated for the training of object detection models and the full-scale implementation of 
automated sorting of Construction and Demolition Waste (CDW). The CODD encompasses a comprehensive 
range of CDW scenarios, capturing a diverse array of debris and waste materials frequently encountered in real- 
world construction and demolition sites. A noteworthy feature of the presented study is the ongoing collaborative 
nature of the dataset, which invites contributions from the scientific community, ensuring its perpetual 
improvement and adaptability to emerging research and practical requirements. Building upon the benchmark 
dataset, an advanced object detection model based on the latest bounding box and instance segmentation 
YOLOV8 architecture is developed to establish a baseline performance for future comparisons. The CODD 
benchmark dataset, along with the baseline model, provides a reliable reference for comprehensive comparisons 
and objective assessments of future models, contributing to progressive advancements and collaborative research 
in the field.   

1. Introduction 

The efficient management of Construction and Demolition Waste 
(CDW) poses a significant and multifaceted challenge for the construc
tion industry, given its profound environmental and economic impacts. 
CDW represents over one-third of all waste in the European Union, 
highlighting its status as the largest waste stream by volume and 
emphasizing the urgency of addressing its impacts (Bilsen et al., 2018). 
Recognizing the crucial role of CDW in environmental sustainability, the 
EU (Directive 2008/98/EC) has placed a strong emphasis on the re
covery, reuse, and recycling of CDW within its Circular Economy 
agenda. This stance is critical in steering the construction sector towards 
more sustainable practices, especially considering the favourable com
parison of recycling over landfilling and incineration in terms of global 
warming potential (Ortiz et al., 2010). 

Despite legislative and environmental initiatives, recycling CDW 
remains challenging, mainly due to concerns over recycled material 
purity. These concerns, often stemming from the variability in waste 
composition and the presence of contaminants, lead to reduced market 
demand for recycled products (Al-Raqeb et al., 2023; Medina et al., 

2015; Vegas et al., 2015). Adding to these complexities is the practice of 
off-site sorting, which is often preferred by contractors despite some 
countries mandating source separation of CDW (Menegaki and Damigos, 
2018; Ulubeyli et al., 2017). In light of these challenges, refining the 
CDW sorting process becomes crucial, as it is instrumental in guaran
teeing the quality of the recycled materials. 

CDW sorting spans from basic centralized and decentralized systems 
(Bao et al., 2020) to more sophisticated automated robotic solutions. 
Traditional sorting systems rely on heavy machinery, including feed 
hoppers, crushing systems, magnetic separators, screens and conveyors 
to separate CDW (Hu et al., 2019). These systems are often com
plemented at the final stages of the process with manual sorting to 
further refine the material purity (Demetriou et al., 2023; Huang et al., 
2002; Hyvarinen et al., 2020). Manual sorting of CDW, nonetheless, is 
often deemed to be inconsistent, costly, unreliable, and hazardous to the 
workers involved in the process (Davis et al., 2021; Sarc et al., 2019). To 
overcome these drawbacks, the integration of robotic systems in CDW 
sorting is gaining traction, driven by recent advancements in machine/ 
deep learning and convolutional neural networks. This shift towards 
automated (and autonomous) sorting is transforming waste 
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management practices, aiming to replace human involvement with more 
accurate, efficient robotic systems in both on-site and off-site sorting 
operations (Bosoc et al., 2021; Chen et al., 2022; Lukka et al., 2014; Sarc 
et al., 2019; Wang et al., 2020; Wang et al., 2019; Xiao et al., 2020). This 
transition is seen as a pivotal step in enhancing waste management ef
ficiency and contributing to sustainable practices in the construction 
sector. The efficacy of these robotic systems, however, hinges crucially 
on their ability to accurately locate and classify different types of waste, 
a challenge being actively addressed by recent advances in machine 
learning and artificial intelligence. This area of research is rapidly 
evolving, with significant implications for the optimization and effi
ciency of automated sorting systems. 

Early automation attempts using robots focused on traditional ma
chine learning methods to enhance waste detection accuracy and 
effectiveness (Bonifazi et al., 2019; Wang et al., 2019; Xiao et al., 2019). 
While pioneering, traditional machine learning often faced limitations 
in efficiency, accuracy, and generalizability, especially in complex waste 
sorting scenarios (Rad et al., 2017; Yu et al., 2020; Zhang et al., 2021; 
Zhao et al., 2022) as they required explicit knowledge of the features to 
be identified, making them less adaptable to the varied and unpredict
able nature of CDW materials. 

As the limitations of traditional approaches became evident, the field 
gradually shifted towards adopting more advanced techniques. This 
evolution is marked by recent contributions such as those by (Chen 
et al., 2022; Demetriou et al., 2023; Dong et al., 2022; Lin et al., 2023; 
Lux et al., 2023), which addressed specific challenges in the domain of 
CDW detection and sorting. For example, Demetriou et al. (2023) 
focused on the complexities of stacking and adherence of CDW samples 
by employing and comparing different single-stage and two-stage CNN 
detection architectures. Lux et al. (2023) proposed the RACNET archi
tecture for the precise classification and accurate estimation of mass, 
class, and binary masks from 2D images of recycled aggregates. Chen 
et al. (2022) developed an instance segmentation model that considers 
aspects such as object size and pose to enhance the grasping efficiency of 
robots. Dong et al. (2022) introduced the Boundary-Aware Transformer 
(BAT) framework for fine-grained composition recognition of con
struction waste mixtures. Various other studies, including the studies of 
(Li et al., 2022; Lin et al., 2022; Song et al., 2022; Zhou et al., 2022), 
significantly contributed to improving the detection accuracy, expanded 
the recognition of diverse CDW materials, and made important strides 
toward the real-world implementation of automated CDW sorting sys
tems. The reader is referred to Table A1 in the appendix for a compre
hensive overview of recent studies related to CDW detection and sorting 
for further reference. 

At the same time, it is imperative to acknowledge a notable challenge 
that persists - the scarcity of comprehensive and standardized bench
mark datasets for training and evaluating CDW detection models. The 
absence of such datasets undermines the ability to perform objective 
comparisons and assessments of different models, thereby hindering the 
overall advancement of the field. Acknowledging this pivotal gap, this 
study aims to develop a much-needed benchmark in order to establish a 
solid foundation that paves the way for future research and innovation 
in automated CDW sorting. A benchmark dataset can serve as an 
invaluable tool, facilitating rigorous evaluations and objective com
parisons of various models, methodologies, and techniques proposed in 
the literature. 

Indeed, benchmark datasets have proven to be highly beneficial in 
various domains. In domestic waste classification, the TrashNet dataset 
proposed by Yang and Thung (2016) has advanced research in this area 
as it serves as a baseline for the development of various object detection 
models on CNN architectures with great reported success (Aral et al., 
2018; Mao et al., 2021). Extended datasets like the ImageNet (Deng 
et al., 2009) have played a crucial role in driving advancements in 
computer vision. In natural language processing, the Stanford Sentiment 
Treebank (SST) dataset (Socher et al., 2013) has been influential for 
sentiment analysis tasks. The KITTI dataset (Geiger et al., 2013) has 

been instrumental in autonomous driving research, providing data for 
tasks such as object detection and scene understanding. In healthcare, 
the MIMIC-III dataset (Johnson et al., 2016) has enabled the develop
ment and evaluation of machine learning models using electronic health 
records. These benchmark datasets provide standardized data and 
evaluation metrics, allowing researchers to compare and benchmark 
their models against common references, thus driving progress and 
fostering innovation in their respective fields. 

In the domain of CDW sorting, however, existing studies utilize 
datasets of varying sizes, compositions, and acquisition methodologies 
(the reader is referred to Table A1 in the appendix). Each study relies on 
its own dataset, limiting the direct comparison of model performance. 
This lack of standardization impedes collaboration and collective 
progress within the field. Against this backdrop, the development of an 
extended, expansive and openly accessible benchmark dataset, as 
envisaged in this study, represents an invaluable and transformative 
resource for researchers. The proposed dataset establishes a standard
ized reference, providing a common ground to evaluate the performance 
of various CDW detection models and benchmark their proposed 
methods. As with other scientific domains, this dataset will facilitate the 
reproducibility of results and will encourage the sharing of ideas, 
techniques, and advancements in CDW detection methodologies, 
encouraging collective scientific progress. 

The main objective of this study is to establish the foundation for 
future advancements in automated and autonomous CDW sorting 
technologies. This is achieved by addressing the notable gap in 
comprehensive and standardised data resources through two main av
enues: the curation of a benchmark dataset, namely the Construction 
and Demolition Waste Object Detection Dataset (CODD), and the 
development of an advanced object detection model to serve as a 
baseline for future comparisons. The establishment of a standardized 
reference for evaluating CDW detection models will encourage collab
oration, reproducibility, and collective advancement in the domain. 
Through this work, the authors envisage creating a dynamic and 
adaptable resource by continuously updating the CODD benchmark with 
contributions from the scientific community so that it aligns with 
emerging research needs and practical requirements. 

2. Research contributions 

This work aspires to set the stage for the widespread adoption of 
automated and autonomous robotic CDW sorting systems by making 
contributions in several key areas: 

1) Benchmark dataset creation: This study sets to bridge the existing 
data gap by developing a benchmark dataset, CODD, for training and 
testing bounding box and instance segmentation object detection 
models in automated CDW sorting systems. 

2) Baseline detection model: This study introduces a state-of-the-art 
detection model to serve as a standardized reference for the evaluation 
of future CDW sorting models and methods, providing a baseline for 
technological advancements in the field. 

3) Collaborative research: This study opens up new avenues for 
collaborative research and innovation in the field of CDW sorting by 
actively inviting researchers to participate, contribute/exchange data, 
and assess their respective models, methodologies, and techniques. 

3. Methodology 

3.1. Dataset acquisition 

To create an accurate and comprehensive benchmark dataset, this 
study adopted a systematic process to acquire and annotate all necessary 
data. Drawing inspiration from the European Commission’s waste 
classification for CDW (European Waste Catalogue, 2001), a wide range 
of CDW categories were collected from a recycling facility in Cyprus 
(Fig. 1) to develop the training, validation and testing datasets in the 
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CODD. The datasets comprised ten distinct categories, namely bricks, 
concrete, tiles, wood, pipes, plastics, general waste (including nylon and 
plastic bottles commonly found at construction and demolition sites), 
foaming insulation, stones, and plasterboards. In alignment with 
Europe’s waste classification, which includes categories such as “con
crete, bricks, tiles and ceramics,” “wood, glass and plastic,” and 
“metals,” this study aimed to capture the CDW types most commonly 
encountered in construction sites. Notably, certain categories such as 
metals, glass and asbestos-containing construction materials were 
omitted from the dataset. This decision was based on the ease of 
removing metals from the waste stream using magnets and the special 
handling requirements associated with glass and asbestos-containing 
materials. Images containing samples of items belonging to the ten 
categories of CDW considered in the development of the CODD are 
presented in Fig. A1 in the appendix. 

During the data collection process, emphasis was placed on inclu
sivity rather than imposing specific size criteria on the selected samples. 
To this end, a wide range of CDW object sizes were selected to accom
modate the diverse waste sorting methods employed by any potential 
end-user of the dataset. To achieve this, an all-inclusive approach was 
adopted, whereby all CDW objects that could fit on the conveyor belt 
were recorded. This decision ensured the dataset’s versatility and 
accounted for scenarios where larger-sized items might be handled using 
specialised grippers or other sorting mechanisms. To illustrate the range 
of sizes included in the dataset, Fig. A2 in the appendix displays the 
mean pixel area per object class. It is worth noting that these values were 
calculated using the surveyor’s formula (Braden, 1986) applied to the 
ground truth polygons (the reader is referred to section 2.2 for details 
regarding ground truth development) of each object. 

Additionally, attention was placed on recording samples that 
exhibited stacking and adherence, as this is known to present challenges 
in CDW object detection. The study of Demetriou et al. (2023) show
cased the degradation of object detection performance on stacked and 
adhered samples, highlighting the importance of incorporating such 
variations in the dataset to develop robust CDW detection models. 
Finally, to preserve the fidelity of the dataset, all collected samples were 
utilized in their original state and as received from the recycling facility. 
This approach ensured that the inherent characteristics and properties of 
the CDW objects encountered in real-world waste streams were accu
rately represented. 

The dataset acquisition process involved capturing images using a 
HIKROBOT MV-CA023-10GC camera overlooking a conveyor belt on 
which the CDW objects were placed. A total of 3,129 images containing 
a total of 16,545 CDW samples were recorded. Each image possessed an 

original size of 1920 × 1200 × 3, with the colour channels being rep
resented in RGB. The data collection phase encompassed different 
lighting conditions, including both artificial and ambient lighting 
setups, emulating the real-world variability observed during CDW 
sorting operations. For a detailed insight into the distribution of the 
samples across the dataset, Fig. A3 in the appendix illustrates the 
number of samples per image. 

3.2. Dataset annotation 

The acquired images were annotated with great care to ensure the 
dataset’s accuracy. This approach involved two independent expert 
annotators and a single supervisor who reviewed and refined the an
notations, correcting any misclassifications and enhancing the precision 
of the bounding boxes. The initial step of this process, wherein each 
object was labelled with bounding boxes, was conducted using MAT
LAB’s image labeller software, as illustrated in Fig. A4 in the appendix. 

Secondly, to facilitate and expedite the labelling procedure, teacher 
models were used to predict approximate classifications and bounding 
box locations. The reader is referred to Demetriou et al. (2023) and 
references therein for more details regarding the deployment of teacher 
models. In images featuring densely stacked and adhered CDW samples 
(as depicted in Fig. 2), extra care was placed to guarantee the precision 
of bounding box annotation by both the human annotators and the 
teacher models. This was achieved through enhanced supervision to 
ensure precise classification and bounding box location in these complex 
scenarios. 

Thirdly, the samples were further annotated with segmentation 
masks using a semi-automated method. Accordingly, bounding box an
notations were converted to instance segmentation masks with the use 
of the very recent Segment Anything Model (SAM) (Kirillov et al., 2023). 
SAM uses a combination of convolutional neural networks and advanced 
image processing algorithms to analyse the visual features and spatial 
relationships within the images, enabling precise object segmentation. 
The code files for the implementation of SAM can be accessed through: 
https://github.com/facebookresearch/segment-anything. Fig. 2 pre
sents an example of annotated objects using bounding boxes and 
instance segmentation masks generated by the SAM, illustrating simul
taneously the progression from single-object, single-class images to 
multi-object, multi-class, heavily stacked and adhered images. 

It is noted that each image in the dataset is accompanied by a single 
file in the standardized Visual Objects Classes (VOC) XML format. 
Accordingly, each XML file contains detailed annotations, including the 
object class, bounding box coordinates (xmin, ymin, xmax, and ymax) 

Fig. 1. (a) CDW recycling facility and (b) piles of manually sorted CDW from where the samples were extracted.  
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defining the enclosing rectangle, as well as the coordinates of the 
polygons (x1, y1, x2, y3, …, xn, yn) outlining the precise boundaries of the 
objects. To aid visualization, a website application has been developed 
and can be accessed at https://coddannotator.streamlit.app/. This 
application enables users of the CODD to visualize the annotated images 
interactively. Instructions on how to use the application are available at 

the provided link. 

3.3. Dataset split 

The images in the benchmark dataset were split into training, vali
dation, and testing subsets with an approximate 70-15-15 % ratio to 

Fig. 2. An illustrative example of annotated objects in the dataset showcasing the utilization of both bounding boxes (left) and SAM generated instance segmentation 
masks (right). 

Fig. 3. Distribution of samples per object class in the (a) training, (b) validation, and (c) testing set of the benchmark dataset.  
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allow for a sufficient amount of training data while reserving separate 
subsets for parameter tuning and evaluation. The final distribution of 
samples per class within the benchmark dataset is graphically depicted 
in Fig. 3. To address the inherent variability found in certain CDW object 
categories, such as bricks, concrete, tiles, and wood, the dataset was 
specifically designed to include a larger number of unique samples for 
these materials. This deliberate increase in the number of unique sam
ples ensured a comprehensive coverage of the diverse characteristics 
and features inherent to these CDW types. Increasing the number of 
samples for these specific materials, the dataset captures their diverse 
and complex characteristics, facilitating more comprehensive training of 
CDW detection models. 

All training, validation, and testing subsets (images and annotations) 
are located in dedicated folders within the benchmark repository (https 
://data.mendeley.com/datasets/wds85kt64j/3), providing easy access 
to researchers and users. 

Finally, a critical aspect of the CODD dataset that is worth high
lighting is the provision of a fixed testing set for all users of the bench
mark so that future evaluations of methods and models can be 
performed on an equal basis. At the same time, it is worth noting that 
while the testing set should always remain fixed, there exists a degree of 
flexibility regarding the utilization of the validation set provided in the 
benchmark repository. This discretionary aspect allows users of the 
CODD dataset to exercise their judgment in determining whether to 
incorporate the validation set into their specific research framework 
since there might be instances where a validation set may not be deemed 
necessary or may be superseded by alternative validation strategies. 

3.4. Dataset perpetuity and expansion 

Ensuring the longevity and availability of the benchmark dataset is 
key in facilitating ongoing research and promoting the reproducibility of 
results. This study recognizes the significance of maintaining the data
set’s perpetuity and adopts a proactive approach to address this aspect. 
Firstly, to ensure the benchmark’s long-term accessibility and preser
vation, the dataset has been deposited in a dedicated repository (https 
://data.mendeley.com/datasets/wds85kt64j/3). This repository serves 
as a centralized and secure location that allows researchers and users to 
easily access, download, and utilize the dataset for their CDW detection 
experiments. Secondly, to ensure the expandability of the dataset, the 
authors commit to providing updates and improvements based on 
community feedback, contributions and emerging research needs. 

Indeed, it is essential to acknowledge that the CODD benchmark, 
while comprehensive, represents merely a fractional glimpse into the 
vast pool of potential images that a multitude of researchers have the 
capacity to amass, with a varying arsenal of cameras, resolutions, dis
tances from objects, perspective changes and an array of other 
contributing factors that can further enrich the diversity in the dataset. 
Certainly, with active engagement with the scientific community and a 
commitment to welcoming contributions, the CODD benchmark will 
continue to evolve, accommodating new CDW categories, equipment 
variations, and real-world environmental conditions, bringing the 
domain one step closer to realizing full-scale implementation. 

The authors kindly request contributors to reach out for specific 
details regarding the submission of their contributions. Upon contact, 
contributors will receive comprehensive guidelines outlining key as
pects to consider before submitting, including annotation format and 
metadata documentation. 

3.5. Training and fine-tuning the baseline models 

To initiate the training process, the YOLOV8, a state-of-the-art sin
gle-stage and anchor-free object detection architecture known for its 
efficiency and accuracy (Guo et al., 2023; Hussain, 2023; Kim et al., 
2023; Terven et al., 2023) was selected. For a deeper understanding of 
the contextual relevance of the YOLO architecture to the particular task, 

readers are encouraged to refer to the study of Demetriou et al. (2023), 
which presents a comprehensive comparison of various single-stage and 
two-stage detection architectures specifically in the context of CDW 
detection. 

In order to establish a performance baseline, a range of bounding box 
detection models were developed on the YOLOV8 architecture at 
different scales, namely YOLOV8n, YOLOV8s, YOLOV8m, YOLOV8l, 
and YOLOV8x. These models were characterized by varying parameters, 
with totals of 3.2, 11.2, 25.9, 43.7, and 68.2 million parameters, 
respectively. The study extended to the training of instance segmenta
tion models, denoted as YOLOV8n-seg, YOLOV8s-seg, YOLOV8m-seg, 
YOLOV8l-seg, and YOLOV8x-seg, featuring 3.4, 11.8, 27.3, 46.0, and 
71.8 million parameters. It is noted that YOLOV8 segmentation models 
repurpose the YOLOV8 object detection architecture, i.e., the model also 
predicts both bounding box coordinates and class probabilities, even 
though the primary focus lies on generating segmentation masks. 

All models underwent training on Google’s Collaboratory platform 
using an Nvidia Tesla T4 GPU with 16 GB of memory. Throughout the 
training phase, all models underwent iterative optimization of their 
parameters. A synergistic combination of techniques was employed to 
enhance the model’s performance; Stochastic gradient descent (SGD) 
optimization was used to minimize the model’s loss function by 
adjusting weights based on gradients computed from mini-batches of 
training samples. During the training process, batch normalization was 
used as a means of preventing overfitting by stabilizing the learning 
process through normalization of the output of each layer within the 
network, reducing the likelihood of overly complex and specialized 
representations. Pretrained weights for all YOLOV8 models were uti
lized as a starting point to expedite the training and convergence pro
cess. These weights can be accessed from the official YOLO GitHub 
repository (Jocher et al., 2023). For convenience and further reference, 
these weights are also available in the CODD’s repository (https://data. 
mendeley.com/datasets/wds85kt64j/3). 

In pursuit of robust and versatile model performance, two distinct 
data augmentation strategies were implemented. Firstly, an offline data 
augmentation strategy was employed as a preprocessing step to generate 
augmented training samples. This augmentation pipeline aimed to 
diversify the training dataset, enhancing the model’s ability to gener
alize to various real-world scenarios. To this end, each image in the 
training set underwent a series of augmentations, resulting in the gen
eration of three distinct augmented images per original input image, 
with a total of 5958 images (1928 x 3) being generated for training. This 
augmentation process encompassed several key transformations. A 
cropping technique was applied with a range of zoom levels, spanning 
from a minimal zoom of 0 % to a maximum zoom of 35 %. This 
augmentation intends to mimic different perspectives and distances of 
the CDW materials on the conveyor belt. Moreover, variations in 
brightness were introduced, encompassing fluctuations within a range 
of − 10 % to +10 %. This augmentation enables the model to robustly 
handle varying levels of illumination. Mosaic augmentation was also 
incorporated into the pipeline. This technique involves the synthesis of 
multiple images to create a cohesive mosaic that simulates complex and 
cluttered scenes. Finally, bounding box shearing was applied to intro
duce spatial deformations. This augmentation introduced horizontal and 
vertical shear transformations within the range of ±15◦, effectively 
simulating the distortion that objects might undergo due to perspective 
changes. It is important to emphasize that the authors arrived at these 
augmentation procedures and associated values through experimenta
tion. Finally, Fig. 4 presents a collection of images generated as a result 
of the above augmentations. 

Secondly, online data augmentation was applied using the YOLOV8 
bag-of-freebies at each training iteration. This augmentation pipeline 
introduced variations into CDW objects, effectively increasing the 
model’s ability to handle diverse CDW scenarios and environmental 
factors. Accordingly, the YOLO data augmentation procedure consisted 
of various techniques, including HSV-Hue augmentation, HSV- 
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Saturation augmentation, image HSV-Value augmentation, image 
translation, scaling, random rotation at 90 degrees, and mosaic 
augmentation. These augmentations were implemented following the 
recommended values provided in the YOLOV8 GitHub repositories 
(Jocher et al., 2023). It is worth noting that all models were trained on 
two input image resolutions, specifically 320 × 320 and 640 × 640, to 
evaluate scale robustness. A selection of the key training parameters is 
illustrated in Table 1 below. 

4. Evaluation metrics 

4.1. Accuracy metrics 

The evaluation of object detection models, particularly within the 
context of a benchmark dataset, requires the use of standardized metrics 
and algorithm-independent metrics to facilitate meaningful compari
sons and promote scientific rigor. In this spirit, the CODD benchmark 
employs the well-established evaluation metrics of Average Precision 
(AP) and mean Average Precision (mAP) to assess the performance of 
the detection models and enable objective comparisons with future 
research. These metrics, as exemplified by major benchmarks such as the 
PASCAL VOC (Everingham et al., 2009) and MS COCO (Lin et al., 2014), 
are chosen for their universal applicability across various object detec
tion methodologies. Average Precision (AP) serves as a fundamental 
metric in object detection evaluation and measures the detection pre
cision at various recall levels. It is calculated independently for each 
considered object class, allowing for class-specific performance analysis. 
The mean Average Precision (mAP), on the other hand, provides a 
comprehensive evaluation of the detector’s overall performance by 
averaging the AP values across all object classes, providing a single value 
that reflects the model’s effectiveness in detecting CDW classes. 

The calculation of AP involves the generation of a precision-recall 
curve, which captures the trade-off between precision and recall. Pre
cision is defined as the ratio of true positive detections to the sum of true 

Fig. 4. Collection of images resulting from the offline data augmentation procedure applied during preprocessing.  

Table 1 
Key training parameters for the YOLOV8 models.  

Parameter Value 

Epochs 25 
Batch size 16 
Input image size 320 × 320 and 640 × 640 pixels 
Learning rate 0.01 
Learning schedule Linear 
Momentum 0.937 
Weight decay 0.001 
Warmup epochs 3 
Warmup momentum 0.8 
Intersection over union 0.7 
Augmentations at each 

iteration 
HSV_Hue = 0.015, HSV_Saturation = 0.7, HSV_Value =
0.4, translate = 0.1, scale = 0.5, fliplr = 0.5, mosaic =
true  
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positive and false positive detections (eq.1). 

p =
TP

TP + FP
(1)  

Recall represents the ratio of true positive detections to the total number 
of ground truth objects (eq.2). By varying the intersection-over-union 
(IOU) threshold, which determines the level of overlap required for a 
detection to be considered correct, the detector’s performance at 
different levels of localization accuracy is assessed. 

r =
TP

TP + FN
(2)  

To calculate AP, integration of the precision over the recall range is 
performed, as denoted in eq.3. 

AP =

∫1

0

p(r)dr (3)  

The precision and recall values are obtained by analysing the classifi
cation predictions and the IOU between the predicted bounding boxes 
(Bp) and ground truth bounding boxes (Bgt) for each image in the testing 
dataset (eq.4). 

IOU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(4)  

True positive (TP) detections are those with an IOU greater than the 
specified threshold and correct classification. In contrast, false positive 
(FP) detections are incorrect predictions with an IOU lower than the 
threshold. False negative (FN) refers to ground truth objects that were 
not detected by the model. 

In the evaluation of CDW detection models, the use of specific IOU 
thresholds is essential for consistent and standardized comparisons. In 
line with established evaluation practices in object detection, the study 
calculates AP at several IOU thresholds, including the baseline (Pascal 
VOC metric) threshold of 0.50. Additionally, the study considers mul
tiple IOU thresholds ranging from 0.50 to 0.95 at intervals of 0.05 to 
provide a comprehensive assessment of the detector’s performance 
across a wide range of localization accuracies. The AP values at these 
thresholds are averaged to obtain AP50:95 for each object class. 
Furthermore, mAP50 and mAP50:95 represent the averaged AP values at 
different thresholds, providing a holistic evaluation of the detector’s 
performance across all considered object classes. 

The use of AP and mAP metrics in evaluating CDW detection models 
within the framework of a benchmark dataset and baseline model en
sures objective and standardized comparisons. The authors would like to 
highlight that adhering to these metrics can facilitate future research, 
enabling researchers to benchmark their own CDW detection methods 
and models against the presented baseline model. 

4.2. Inference speed metrics 

The evaluation of inference speed is conducted by measuring the 
time taken to process a single image throughout three distinct stages: 
pre-processing, inference, and post-processing. The total inference speed 
(pre-processing, inference and post-processing) of the baseline model is 
measured on a Tesla T4 16 GB GPU. 

5. Results and discussion 

5.1. Model performance evaluation 

In this section, the evaluation of two types of models investigated in 
this study, namely bounding box and instance segmentation models, is 
presented. The performance of these models is rigorously assessed on the 

metrics of Average Precision (AP) and mean Average Precision (mAP) in 
order to establish a performance baseline that will enable objective 
comparisons and benchmarking against future research. Each model was 
trained on the training set and evaluated on the dedicated validation and 
testing sets. The mAP50:95, representing the averaged AP values across 
different Intersection over Union (IOU) thresholds (ranging from 0.50 to 
0.95 at intervals of 0.05), is used as the overall performance indicator. 
Below, the mAP50:95 achieved by the bounding box and instance seg
mentation models as a function of the inference speed across different 
model scales and input image resolutions is graphically presented in 
Fig. 5 and Fig. 6 (complemented by Table A2 and Table A3 in the ap
pendix). For the completeness of the investigation and benchmarking 
purposes, analytical and per object class detection results for all the 
models developed herein are provided as supplementary material to this 
paper and can be accessed through the benchmark repository (https 
://data.mendeley.com/datasets/wds85kt64j/3). Finally, PyTorch (.pt) 
files of all the models trained on CODD have been made available, 
ensuring accessibility for further research and application in the field. 

As evident from the results depicted in Fig. 5 and Fig. 6, some general 
remarks can be made. Firstly, it is apparent that models trained on a 
higher image resolution naturally achieve superior performance over 
their counterparts. Secondly, there is an evident positive correlation 
between model scale and detection accuracy, with the larger model scale 
(YOLOV8x) outperforming their smaller counterparts both with respect 
to bounding box (Fig. 5) and instance segmentation detection (Fig. 6), at 
the expense of inference speed. While this observation might seem 
trivial, this increase in performance as a function of model scale across 
the whole spectrum is a primary indicator of the absence of overfitting. 
Indeed, this observation suggests that within the context of the CODD 
benchmark, it is apparent that the problem domain is sufficiently com
plex to require models of increased complexity. This observation in turn 
suggests the suitability of the CODD as a benchmark dataset on which 
very complex model architectures can be implemented. 

On the contrary, if overfitting was present, one would expect a point 
at which increasing the model’s complexity (scale) would lead to 
diminishing returns, potentially even a decrease in performance on the 
validation and/or test data. The absence of degradation in performance 
between the validation and testing sets (as evident both in Fig. 5 and 
Fig. 6), in addition to the absence of performance degradation as a 
function of the model scale, reinforces the argument for good model 
generalisation and against overfitting, suggesting that the models 
developed herein exhibit the robustness necessary for a potential 
expansion in real-world applications. 

Furthermore, the comparison between YOLOV8n and YOLOV8s, as 
well as the YOLOV8n-seg and YOLOV8s-seg, particularly at lower (320 
× 320) image resolutions yields that small increases in model 
complexity (e.g., increasing the model scale from YOLOV8n to 
YOLOV8s) can result to substantial gains in mAP, as evident from the 
steep gradient between these two points. Conversely, larger model scales 
beyond the YOLOV8s and YOLOV8s-seg exhibit a diminishing rate of 
increase in performance. 

Fig. 7 illustrates the per-class results of the bounding box and 
instance segmentation models achieving the best overall detection per
formance, namely YOLOV8x and YOLOV8x-seg. It is noteworthy, and as 
anticipated, that YOLOV8x demonstrates superior performance 
compared to the YOLOV8x-seg model across all classes. This can be 
attributed to the additional complexity associated with the latter task (e. 
g., instance segmentation). Additionally, a commendable overall 
(mAP50:95) performance is attained for most classes, signifying the 
model’s efficacy in accurately localizing and classifying objects. How
ever, it is also noted that the object classes ’plastic’ and ’pipes’ achieve 
slightly lower mAP scores, suggesting potential areas for further opti
mization, data enrichment or data augmentation to enhance perfor
mance in these specific categories. 

For visualisation, Fig. 8 presents a collection of CDW objects detected 
using both bounding boxes and instance segmentation masks using the 
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Fig. 5. Performance comparison of different scales of the YOLOV8 bounding box models on the (a) validation and (b) testing set at an input image resolution 320 ×
320 and 640 × 640. 

Fig. 6. Performance comparison of different scales of the YOLOV8 instance segmentation models on the (a) validation and (b) testing set at an input image resolution 
of 320 × 320 and 640 × 640 (subscripts ‘-seg’ e.g., YOLOV8n-seg, YOLOV8s-seg etc. have been immitted for figure clarity). 

Fig. 7. Bounding box and instance segmentation performance of the YOLOV8X model per object class on (a) validation and (b) testing set.  
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YOLOV8x-seg model. It is observed that most objects in the figure are 
accurately identified and contoured, demonstrating the capability of the 
YOLOV8x-seg model to identify CDW accurately. For a qualitative 
assessment of the various scale instance segmentation models trained on 
the CODD dataset, the authors developed an interactive tool accessible 
at https://yolov8inferencetool.streamlit.app/. This web application 
enables users to interactively explore inference results from different 
model scales, offering valuable insights into their performance. Specif
ically, the tool can be used to demonstrate the efficacy of progressively 
larger model scales in handling complex scenarios, such as samples 
exhibiting stacking and adherence, within the CODD testing dataset. 

6. Conclusions 

This study addresses a notable gap, the absence of a dedicated 
benchmark dataset in the field of Construction and Demolition Waste 
(CDW) sorting, by introducing a comprehensive benchmark dataset 
specifically tailored to the training and evaluation of object detection 
(bounding box and instance segmentation) models. The Construction 
and Demolition Waste Object Detection Dataset (CODD), developed in 
this study, captures an assortment of CDW materials commonly 
encountered in real-world construction and demolition sites. The dataset 
consists of 10 CDW categories, including bricks, concrete, tiles, wood, 
pipes, plastics, general waste, foaming insulation, stones, and plaster 
boards, ensuring an accurate and realistic representation of the diverse 

waste materials encountered during CDW sorting operations. 
For the development of the CODD, a diverse array of RGB images 

were recorded and annotated in the standardized Visual Objects Classes 
(VOC) XML format, ensuring user-friendly access for future usage. The 
provided files contain both bounding box coordinates and instance 
segmentation masks generated using the very recent Segment Anything 
Model (SAM), which facilitated the efficient conversion of bounding box 
coordinates to polygon coordinates. Both images and annotations are 
structured and available in dedicated folders within the benchmark re
pository (https://data.mendeley.com/datasets/wds85kt64j/3). 

The study introduced an advanced object detection model based on 
the YOLOV8 architecture, establishing a performance baseline for future 
comparisons and assessments. In an attempt to extract maximum per
formance from all the developed models, a meticulous data augmenta
tion procedure was introduced as a preprocessing step to enhance the 
diversity and complexity of the images in the training set. A systematic 
evaluation of the developed models across various scales and image 
resolutions was performed and the findings exhibited a clear correlation 
between model scale, image resolution, and detection accuracy. Most 
importantly, a crucial consistency in performance between the valida
tion and testing sets was observed, suggesting the absence of overfitting 
as well as the robustness and generalisability of all developed models. As 
anticipated, the largest model scale, YOLOV8x and YOLOV8x-seg, 
showcased the highest detection accuracy, naturally at the expense of 
inference speed. For disclosure, transparency and future referencing, 

Fig. 8. YOLOV8x-seg (640 × 640) bounding boxes and instance segmentation masks detected on selected testing set images.  
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analytical model results and all the YOLOV8 models (in PyTorch.pt 
format) developed herein are provided as supplementary material to this 
paper. 

The authors acknowledge the dynamic nature of research in this 
domain and eagerly anticipate contributions from the scientific com
munity. With an open invitation for contributions to the scientific 
community, the authors are confident that the CODD is poised to grow, 
encompassing an even broader spectrum of CDW categories, equipment 
variations, and real-world environmental conditions. The authors 
strongly believe that a collective effort is required to get one step closer 
to the realization of widespread and effective CDW sorting 
implementations. 
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